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                                               Abstract 
 
 
 Ocean wave propagation causes random change of ocean surface slope and in 

turn affects the underwater bomb trajectory deviation (r) through water column. This 

trajectory deviation is crucial for the clearance of obstacles such as sea mines or maritime   

improvised explosive device (IED) in coastal oceans using bombs. A nonlinear six 

degrees of freedom (6-DOF) model has been recently developed and verified at the Naval 

Postgraduate School with various surface impact speeds and surface slopes as model 

inputs. The surface slope (s) randomly changes between 0 and π/2 with a probability 

density function (PDF) p(s), or called the s-PDF.  After s is discretized into I intervals by 

s1, s2, …, si , …  sI+1,  the 6-DOF model is integrated with a given surface impact speed 

(v0) and each slope si to get bomb trajectory deviation îr  at depth (h) as a model output. 

The calculated series of { îr } is re-arranged into monotonically increasing order (rj}. The 

bomb trajectory deviation r within (rj, rj+1) may correspond to one interval or several 

intervals of s.  The probability of r falling into (rj, rj+1) can be obtained from the 

probability of s, and in turn the PDF of r, or called the r-PDF.  Change of the r-PDF 

versus features of the s-PDF, water depth, and surface impact speed is also investigated.  

 

Keywords: 3D underwater bomb trajectory model, probability density function, bomb 

trajectory deviation, stochastic ocean surface slope, STRIKE35 
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        1.  Introduction  

 Movement of a fast-moving rigid body such as a bomb through water column has 

been studied recently [1-3]. These studies have been motivated by a new concept of using 

the Joint Direct Attack Munition (JDAM, i.e., ‘smart’ bomb guided to its target by an 

integrated inertial guidance system coupled with a global positioning system) Assault 

Breaching System (JABS) for mine/maritime  improvised explosive device (IED)  

clearance,  in order to reduce the risk to personnel and to decrease the sweep timeline 

without sacrificing effectiveness (Fig. 1).  Underwater bomb trajectory depends largely 

on the surface impact speed and angle. When the surface impact of high-speed rigid body 

such as scaled MK-84 warhead is normal or near normal to the flat water surface, four 

types of trajectories have been identified from experimental and numerical modeling 

results [4] depending the characteristics of the warheads: with tail section and four fins 

(Type-1), with tail section and two fins (Type-1I),   with tail section and no fin (Type-1II), 

and with no tail section (Type-IV).  Type-1 trajectories are quite stable downward 

without oscillation and tumbling no matter the water entry velocity is high or low. Type-2 

and Type-3 trajectories are first downward, then making180o turn (upward), and travel 

toward the surface. Type-IV trajectories are at first downward with little horizontal drift 

and then tumbling downward with large horizontal drift.   

 The horizontal distance (r) (or called trajectory deviation) between surface impact 

point and the bomb location varies with depth in different types of trajectories. This 

parameter draws attention to the naval research due to the threat of mine and maritime 

IED.  Prediction of trajectory deviation of an underwater bomb contributes to the bomb 

breaching for mine and maritime IED clearance in surf and very shallow water zones 
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with depth shallower than 12.2 m (i.e., 40 ft), shallow water zones  (12.2 – 91.4 m, i.e., 

40-300 ft), and deep zones (deeper than 91.4 m, i.e., 300 ft) according to U.S. Navy’s 

standards.  The bombs’ trajectory drift is required to satisfy the condition, r ≤ 2.1 m, for 

the validity of mine clearance using bombs [5].  

 In coastal oceans, waves form when the water surface is disturbed, for example, 

by wind or gravitational forces. During such disturbances energy and momentum are 

transferred to the water mass and sea-state is changed.  For very shallow and shallow 

water regions, the bottom topography affects the waves dramatically and causes a 

significant change in surface slope. When bomb strikes on the wavy ocean surface, a 

scientific problem arises: How does randomly changing ocean-surface slope affect the 

underwater bomb trajectory and orientation? Or what is the probability density function 

of the underwater bomb trajectory deviation due to random sea surface slope? The major 

task of this paper is to answer these questions. The effect of surface slope on the 

underwater bomb trajectory is presented in Section 2. Stochastic features of the sea slope 

are simply described in Section 3. A recently developed six degrees of freedom (6-DOF) 

model at the Naval Postgraduate School for predicting underwater bomb location and 

trajectory is depicted in Section 4. Ensemble 6-DOF modeling to get PDF of trajectory 

deviation d from the stochastically changing sea surface slope is described in Section 5. 

The conclusions are presented in Section 6. 

 2. Effect of Ocean Surface Slope on Underwater Bomb Trajectory 

 Let μ be the inclination angle of the ocean surface; and φ  be the bomb impact 

angle relative to the normal direction of the ocean surface (Fig. 2).     For a flat surface 

(no waves),     
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                                                         0μ =                                                                    (1a) 

For 90o bomb striking (vertically downward),  

                                                        0φ =                                                                     (1b) 

With ocean wave propagation, μ  can be treated as an averaged value in a wave period; 

and corresponding averaged slope in a wave period (s) is given by  

                                                        * tans μ= .                                                             (2) 

The ocean waves may cause evident slant of the ocean surface with 55oμ ≈  (Kinsman, 

1965), which affects the underwater bomb trajectory, orientation, and horizontal drift (r) 

(Fig. 3). The differential effects depend on which part of the wave is impacted by the 

bomb (i.e., different sea slopes).  Obviously, such a wave effect can be investigated by a 

6-DOF model with a sloping surface (i.e., μ  changing with time)   and non-normal 

impact angle (i.e., φ  ≠ 0).  

Besides, the surface slope also affects the tail separation due to the bomb and 

cavity orientations and the air-cavity geometry. This is because the air cavitation or 

supercavitation is usually generated after the bomb enters the water surface [7]. The 

cavity is usually oriented in the same direction of the bomb velocity with its geometry 

simply represented by a cone with the angle (γ ). The bomb orientation relative to the 

cavity is represented by the angle between the bomb main axis and velocity (β ). The 

condition for bomb not hitting the cavity wall is given by (Fig. 4a)  

                                                      β γ< .                                                     (3a) 
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Violation of the condition (3) may cause the tail separation (bomb hitting the cavity wall), 

as shown in Fig. 4b.  Ocean waves not only affect the bomb trajectory and orientation but 

also change the cavity orientation, which may cause  

                                                                  β γ> ,                                                     (3b) 

i.e., the bomb may hit the cavity wall and cause the tail separation (Fig. 4). 

 3. PDF of Ocean Surface Slope 

 Wave height and wave period are approximately independent of each other for 

either wind waves or swells, but not for mixed waves. From mixed wave records, Gooda 

[8]  found that there is a strong correlation between wave height and wave period. In fact, 

the correlation is mainly caused by the two or more groups of notable waves with 

different characteristic wave heights and periods in the mixed waves. With the 

independent assumption between wave amplitude and wave period (or wavelength), the 

PDF of averaged wave slope s scaled by its standard deviation σ (the real slope is s* = sσ) 

is obtained from the PDF of wave length and PDF of wave amplitude [9],  

                                         
( ) ( )

( )2 / 2
2

( ) 1
1 1

n
n sp s s

n n

− +
⎡ ⎤

= +⎢ ⎥− −⎣ ⎦
,                                    (4) 

where n is  the peakedness coefficient which is determined by both the spectral width of 

the gravity waves, and the ratio between the gravity wave mean-square slope and the 

detectable short wave mean-square slope.  Generally speaking, the peakedness of slopes 

is generated by nonlinear wave–wave interactions in the range of gravity waves; and the 

skewness of slopes is generated by nonlinear coupling between the short waves and the 

underlying long waves. For n = 2, the PDF of the wavelength corresponds to the Rayleigh 

distribution.  For n = 10, the PDF in (4) fits the Gram Charlier distribution [10], very 
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well in the range of small slopes. As n→∞, the PDF of the wavelength tends to the 

Gaussian distribution [9].  Fig. 6 shows four typical surface-slope characteristics:  (a) n = 

2,  (b) n = 4, (c) n = 10, and n = 100. It is seen that There is almost no difference in PDF 

between n = 10 and n = 100.    

 4. A 6-DOF Model (STRIKE35) 

 Recently, a 6-DOF model has been developed at the Naval Postgraduate School 

for predicting underwater bomb location and trajectory.  It contains three parts: 

momentum equation, moment of momentum equation, and semi-empirical formulas for 

drag, lift, and torque coefficients [11-13]. The momentum equation of a rigid body is 

given by 

                                          g b d l
dm
dt

= + + +
u F F F F ,                                                 (5)           

where m is the mass of the rigid body, u is the translation velocity of the center of mass, 

                                           ,    ,g bmg gρ= − = ΠF k F k                                               (6)            

are the gravity and buoyancy force;  Π  is the volume of the rigid body; k is the unit 

vector in the vertical direction (positive upward): and g is the gravitational acceleration.   

Fd is the drag force; and Fl is the lift force.   

 The moment of momentum equation is given by  

                                ( ) ,h
d g
dt

σ ρ• = − × Π +
ΩJ e k M                                                   (7) 

where  Ω  is the rigid-body’s angular velocity vector;  σ  is the distance between center 

of volume (ov) and center of mass (om), which has a positive (negative) value when the 
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direction from ov  to om   is the same (opposite) as the unit vector e; Mh is the 

hydrodynamic torque due to the drag/lift forces; and  J is the gyration tensor.  

The drag/lift/torque coefficients should be given before running the 6-DOF model. 

These coefficients depend on various physical processes such as water surface 

penetration, super-cavitation, and bubble dynamics.  A diagnostic-photographic method 

has been developed [4] to get semi-empirical formulae for calculating the drag/lift/torque 

coefficients for underwater bombs with dependence on the Reynolds number (Re), angle 

of attack (α), and rotation rate along the bomb’s major axis (Ω) [4], 

                  ( )
2 0.2

2 2 Re0.02 0.35 0.008 sin
Re*dC e

πα θ− − ⎛ ⎞= + + Ω⎜ ⎟
⎝ ⎠

,                                (8) 

              
( )

( ) ( )

0.2

1

2
0.85

2 2

Re0.35sin                                 if 
Re* 2

Re0.1sin 0.015 sin     if 
Re* 2

lC

πθ α

πθ θ α

⎧ ⎛ ⎞ ≤⎪ ⎜ ⎟
⎪ ⎝ ⎠= ⎨

⎛ ⎞⎪ − Ω >⎜ ⎟⎪ ⎝ ⎠⎩

                         (9)        

              
( )

( )

0.2Re*0.07sin 2       if   
Re 2

Re0.02sin 2    if 
Re* 2

mC

πα α

πα α

⎧ ⎛ ⎞ ≤⎪ ⎜ ⎟
⎝ ⎠⎪= ⎨

⎛ ⎞⎪ >⎜ ⎟⎪ ⎝ ⎠⎩

                                              (10) 

Here, Re* = 1.8× 107,   is the critical Reynolds number, and  

                               ( )( ) ( )
1

2.2 2.22.2 2 sign 2θ π π π α π α≡ − − − − ,                              (11) 

                                
1.8

1
2αθ π
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 ,    
0.7

2
22 1αθ π
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

.                                 (12) 

 5. PDF of Bomb’s Horizontal Drift 
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 Let the bomb be dropped in the vertical direction to the slanted sea surface 

characterized by an averaged slope (s* = σs) in a wave period, here s* = tan μ (see Fig. 

1). Consider a 5-time of s* value as the interval [0, 5s*] for the change of the surface 

slope.  This interval [0, 5s*] is divided into I equal sub-intervals,  

                                            5 * ,   0,1,2,...,i
iss i I
I

σ = = ,                                          (13) 

with the corresponding  inclination, 

                            5 *arctan( ) arctan ,   0,1,2,...,i i
iss i I
I

μ σ= = = .                           (14) 

  

For a given parameter n  in the s-PDF, the probability for s* taking values between σsi-1 

and σsi is calculated by   

                                           1

1Prob( ) ( )i

i

s

i i i s
P s s s p s ds+

+≡ ≤ ≤ = ∫ .                        (15) 

 The 6-DOF model is integrated I times (called ensemble integration) from the 

surface impact speed (V) and various μi values to get the bomb horizontal drift îr   (i = 0, 

1,  …, I) at depth z = -H.  The series { îr ,  i = 0, 1, …,  I} might not be in monotonically 

increasing or decreasing order. Therefore, it is reorganized into monotonically increasing 

order {rj , j = 0, 1, …,  J} with J ≤  I. The inequality is due to an interval [rj, rj+1] of the 

horizontal drift corresponding to m intervals {[si1, si1+1],  [si2, si2+1], …, [sim, sim+1]} of 

the surface slope (Fig. 7) . The probability for the bomb’s horizontal drift r taking values 

between rj and rj+1 is calculated by   

             1 1 2 1 1

1 2
1Prob( ) ( ) ( ) ... ( )i i in

i i in

s s s

j j j s s s
Q r r r p s ds p s ds p s ds+ + +

+≡ ≤ ≤ = + + +∫ ∫ ∫ .           (16) 
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The probability density between rj and rj+1  is calculated by  

                                                
1

j
j

j j

Q
p

r r+

=
−

.                                                                 (17) 

From pj, we can obtain the PDF of r, or called the r-PDF. 

 6. Sensitivity Studies 

 6.1 Dependence of the r-PDF on Depth 

 Dependence of r-PDF on depth can be identified from the ensemble integration (I 

= 100) of the 6-DOF model with given bomb’s surface impact speed (V = 300 m/s), s* = 

0.2 (i.e., σ = 0.2),   and n = 2 (i.e., large peakedness in the s-PDF).  The calculated r-PDF 

(Fig. 8) is positively skewed for shallow depth (H = 12.2 m, i.e., 40 ft), reduces the 

skewness as depth increases to 50 m,  becomes negatively skewed as the depth exceeding 

91.4 m (i.e., 300 ft).  The negative skewness strengthens as depth deeper than 91.4 m. 

The horizontal axis in all the panels Fig. 8 is the non-dimensional horizontal drift r/H.   

The median (50 percentile q0.5) of the horizontal drift (r) is 0.16 m at the depth z = -12.2 

m, 1.7 m at z = -50 m, 5.4 m at z = -91.4 m (300 ft), 18.0 m at z = -150 m, 34.0 m at z = -

200 m, and 52.5 m at z = -250 m (Table 1).  Here z is the vertical coordinates with z = 0 

corresponding to the water surface. Thus, down to the depth of 50 m, the median value of 

the horizontal drift is always less than the Navy’s criterion, i.e., 2.1 m.  The 95 percentile 

(q0.95) of the horizontal drift (r) represents a reasonable estimation (with 95% of 

confidence) of the distance between bomb and mine/maritime IED when the bomb 

maneuvering in the water column. If this value is smaller than 2.1 m, according to the 

Navy’s standard, the bomb will effectively ‘kill’ the mine/maritime IED. It is 0.32 m at 

the depth z = -12.2 m, 2.8 m at z = -50 m, 7.86 m at z = -91.4 m (300 ft), 22.5 m at z =      
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-150 m, 40.0 m at z = -200 m, and 60.0 m at z = -250 m (Table 2).  The 5 percentile (q0.05) 

of the horizontal drift (r) represents the minimum distance (likely) between bomb and 

mine/maritime IED when the bomb maneuvering in the water column. It is 0.13 m at the 

depth z = -12.2 m, 0.6 m at z = -50 m, 5.48 m at z = -91.4 m (300 ft), 10.5 m at z = -150 

m, 24.0 m at z =    -200 m, and 40.0 m at z = -250 m (Table 3).   

 6.2. Dependence of the r-PDF on the Peakedness of the s-PDF 

 Keeping all the initial conditions in running the 6-DOF model the  same as 

described in subsection 6.1 except changing the parameter n of the s-PDF from 2 to 100 

(small peakedness), the ensemble integration of the 6-DOF model shows the following 

results. The calculated r-PDF (Fig. 9) is almost zero skewness for shallow depths (H = 

12.2 m, 50 m), becomes negatively skewed as the depth of 91.4 m (i.e., 300 ft).  The 

negative skewness strengthens as depth deeper than 91.4 m.  Comparing between Fig. 9 

and Fig. 8, we may find that the negative skewness of r-PDF increases as n increases. 

The median, q0.95, and q0.05 of the horizontal drift (r) do not change too much as n 

increases from 2 to 100 (Tables 1-3).   

 6.3. Dependence of the r-PDF on the Averaged Surface slope σ 

 Keeping all the initial conditions in running the 6-DOF model the same as 

described in subsection 6.1 except increasing the averaged surface slope σ from 0.2 to 1, 

the calculated r-PDF (Fig. 10) is negatively skewed at all depths; and the negative 

skewness enhances as the depth increases.   Comparing between Fig. 10 and Fig. 8, we 

may find that the negative skewness of r-PDF increases as σ increases. The median, q0.95, 

and q0.05 of the horizontal drift (r) increase drastically as σ increases from 0.2 to 1.0 

(Table3 1-3). For example, q0.95 is 0.54 m at depth z = -12.2 m, 4.0 m at z = -50 m, 10.05 
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m at z = -91.4 m (300 ft), 25.5 m at z = - 150 m, 46.0 m at z = -200 m, and 67.5 m at z =  

-250 m (Table 2).   

 6.4. Dependence of the r-PDF on the Surface Impact Speed V 

 Keeping all the initial conditions in running the 6-DOF model the same as 

described in subsection 6.1 except decreasing the surface impact speed V from 300 m/s to 

200 m/s, the calculated r-PDF (Fig. 11) is quite comparable to case with the impact speed 

of 300 m/s (Fig. 8) such as positive skewness for shallow depth (H = 12.2 m, i.e., 40 ft), 

weaker skewness as depth increasing to 50 m,  negative skewness as the depth exceeding 

91.4 m (i.e., 300 ft).  Comparing between Figs. 11 and 8, reduction of surface impact 

speed leads to the increase of the peakedness of the r-PDF.  The median, q0.95, and q0.05 of  

the horizontal drift (r) are usually higher for V = 200 m/s than that for V = 300 m/s except 

for the very shallow water depth (z = -12.2 m) where q0.95, and q0.05  are lower   for V = 

200 m/s (0.17 m, 0.04 m) than that for V = 300 m/s (0.32 m, 0.13 m) (Tables 1-3).   

 7. Conclusions  

The PDF of the horizontal drift of underwater bomb trajectory (i.e., r-PDF) due to 

stochastic ocean surface slope is obtained through ensemble integration of the 6-DOF 

model recently developed at the Naval Postgraduate School. For a bomb dropping in the 

vertical direction to a slanted sea surface, the input parameters of the 6-DOF model are 

the bomb’s surface impact speed (V), and surface slope. The surface slope is a random 

variable depending on two parameters: (a) averaged slope within a wave period (σ), and 

(b) peakedness of the s-PDF (n). The s-PDF is discretized into I intervals (in this paper, I 

= 100).  For given values of (V, σ, n), the 6-DOF model is integrated I times with 

different values of the surface slope from the s-PDF to obtained I values of the horizontal 
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drift at various depth. The r-PDF is then constructed from these r values. The r-PDF has 

the following features: 

 (1) The r-PDF varies with depth. Usually, the r-PDF is positively skewed for very 

shallow water (H = 12.2 m, i.e., 40 ft), and negatively skewed down below. Increase of 

the peakedness parameter of the s-PDF (n) or the averaged surface slope in a wave period 

(σ) reduces the positive skewness at the very shallow water and enhances the negative 

skewness.  Decrease of the bomb’s surface impact speed (V) enhances the peakedness of 

the r-PDF. Three measures were calculated (q0.05, q0.5, and q0.95) from the r-PDF. 

 (2) The values of q0.95 are small for all cases at a very shallow depth (z = -12.2 m, 

i.e., 40 ft) with a maximum value of 0.54 m for the initial conditions of (V = 300 m/s, n = 

2, σ = 1.0). This value (0.54 m) is much smaller than the critical value of 2.1 m for 

effectively ‘killing’ the mine/maritime.  This may prove that the Joint Direct Attack 

Munition (JDAM) Assault Breaching System (JABS) is effective to clear mines and light 

obstacles in very shallow water (depth up to 12.2 m, i.e., 40 ft). 

 (3) The values of q0.95 are all larger than 2.1 m when the depth deeper than 50 m. 

This indicates that to extend the JABS from very shallow water (12.2 m depth) to shallow 

water (12.2 m – 91.4 m) needs more studies.  

Acknowledgments 

The Office of Naval Research Breaching Technology Program (Grant Number: 

N0001410WX20165, Program Manager: Brian Almquist) supported this study. 



14 

Launch Internet Explorer Browser.lnk  

References  

[1] Chu, P.C., and G. P. Ray, 2006, “Prediction of high-speed rigid body maneuvering in 
air-water-sediment,” Adv. Fluid Mech., 6, edited by M. Rahman and C.A. Brebbia,  WIT 
Press (ISBN-1-84564-163-9),  43-52.  
 
[2] Ray G. P., 2006. Bomb Strike Experiments for Mine Clearance Operations. MS   
Thesis in Meteorology and Physical Oceanography,  Naval Postgraduate School, 
Monterey, California, pp. 197. 
 
[3] Chu, P.C.,  Fan, C.W., and  Gefken, P.R., 2008, “Semi-empirical formulas of drag/lift 
coefficients for high-speed rigid body maneuvering in water column,” Adv. Fluid Mech., 
7, edited by M. Rahman and C.A. Brebbia,  WIT Press (ISSN-1743-3533),  163-172. 
 
[4] Chu, P.C., Fan, C.W., and P. R. Gefken, 2010. “Diagnostic-photographic 
determination of drag/lift/torque coefficients of high speed rigid body in water column,” 
ASME J.  Appl.  Mech., 77, 011015-1- 011015-15.   
 
[5] Humes, G., 2007. Technology Transition Agreement, EC SHD-FYO6-03 FNC 
Product: Standoff Assault Breaching Weapon Fuze Improvement. pp.10. 
 
[6]  Kinsman, B., 1965,  Wind Waves, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 
Library of Congress Catalog Card Number: 64-10136, pp. 676. 
 
[7]  Dare, A.,  Landsberg, A.,  Kee,  A., and Wardlaw, A., 2003, “Three-dimensional 
modeling and simulation of weapons effects for obstacle clearance,”  DoD  User Group 
Conf., Bellevue, Washington, 09-13 June, pp. 9.   
 
[8] Gooda, Y., 1977, “The analysis on the joint distribution of period and wave height 
from the records of wave observations (in Japanese),” Technol. Res. Data Estuaries, 272, 
1–19. 
 
[9] Liu, Y., Yan, X.-H., Liu, W.T.,  and Hwang, P.A., 1997, “The probability density 
function of ocean surface slopes and its effects on radar backscatter,”  J. Phys. 
Oceanogr., 27, 782-797.   
 
 
[10] Cox, C. S., and Munk, W. H., 1954, “Measurement of the roughness of the sea 
surface from photographs of the sun’s glitter,”  J. Opt. Soc. Amer., 44, 838–850. 
 
 [11] Chu, P.C., and Fan, C.W., 2006. “Prediction of falling cylinder through air-water-
sediment columns,” AMSE  J.  Appl.  Mech., 73, 300-314. 
 



15 

Launch Internet Explorer Browser.lnk  

[12] Chu, P.C., and Fan, C.W., 2007, “Mine impact burial model (IMPACT35) 
verification and improvement using sediment bearing factor method,” IEEE J. Ocean. 
Eng., 32 (1), pp. 34-48.  
 
[13] Chu, P.C., 2009,  “Mine impact burial prediction from one to three dimensions,” 
ASME Appl. Mech.  Rev., 62 (1), 010802 (25 pages), DOI: 1115/1.3013823. 



16 

Launch Internet Explorer Browser.lnk  

 

Table 1.  The median horizontal drift (unit: m) of an underwater bomb at various depths 
obtained from ensemble integration of the 6-DOF model with various input parameters.  
Depth (m) Case 1: 

V = 300 m/s 
n = 2 
σ = 0.2 

Case 2: 
V = 300 m/s 
n = 100 
σ = 0.2 

Case 3: 
V = 300 
m/s 
n = 2 
σ = 1.0 

Case 4: 
V = 200 m/s 
n = 2 
σ = 0.2 

  12.2     0.16      0.16      0.37      0.17 
  50.0     1.7      1.8      3.1      2.5 
  91.4     5.4      5.7      8.6      8.9 
150.0   18.0    18.0    22.5    25.5 
200.0   34.0    34.0    42.0    44.0 
250.0   52.5    55.0    62.5    65.0 
 
 
Table 2.  The values of q0.95 for the horizontal drift (unit: m) of an underwater bomb at 
various depths obtained from ensemble integration of the 6-DOF model with various 
input parameters.  
 

 
 
 
 
 
 
 

Depth (m) Case 1: 
V = 300 m/s 
n = 2 
σ = 0.2 

Case 2: 
V = 300 
m/s 
n = 100 
σ = 0.2 

Case 3: 
V = 300 
m/s 
n = 2 
σ = 1.0 

Case 4: 
V = 200 
m/s 
n = 2 
σ = 0.2 

  12.2     0.32      0.27      0.54      0.17 
  50.0     2.8      2.55      4.0      3.6 
  91.4     7.86      7.40    10.05    10.97 
150.0   22.5    21.0    25.5    28.5 
200.0   40.0    38.0    46.0    48.0 
250.0   60.0    60.0    67.5    70.0 
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Table 3.  The values of q0.05 for the horizontal drift (unit: m) of an underwater bomb at 
various depths obtained from ensemble integration of the 6-DOF model with various 
input parameters.  
 

 
 

Depth (m) Case 1: 
V = 300 m/s 
n = 2 
σ = 0.2 

Case 2: 
V = 300 
m/s 
n = 100 
σ = 0.2 

Case 3: 
V = 300 
m/s 
n = 2 
σ = 1.0 

Case 4: 
V = 200 
m/s 
n = 2 
σ = 0.2 

  12.2     0.13      0.05      0.15      0.04 
  50.0     0.6      0.80      1.8      1.05 
  91.4     5.48      7.40      5.76      5.30 
150.0   10.5    12.45    18.0    18.0 
200.0   24.0    26.0    34.0    32.0 
250.0   40.0    45.0    55.0    55.0 
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Fig. 1. The concept of airborne  sea mine/maritime IED  clearance.  
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Fig. 2.  Ocean surface inclination angle (μ ) and bomb impact angle (φ ) relative to the 
normal direction of the surface. 
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r

                    
Fig. 3.  Dependence of underwater bomb trajectory, orientation, and horizontal deviation 
(r) on the ocean surface slope or on different locations of the waves. 
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(a) (b) 
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V          
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Fig. 4.  Air cavity with (a) β γ< (tail section not hitting the cavity wall, and (b)  with 
β γ=  (tail section hitting the cavity wall).  
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Fig. 5. Wave effect on the air cavity orientation which may cause β γ>  (Tail section 
hitting the cavity wall). 
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 Fig. 6. The  s-PDFs  for various surface characteristics: (a) n = 2, (b) n = 4,  (c)  n = 10, 
and (d) n = 100.   



24 

Launch Internet Explorer Browser.lnk  

 s

pdf

r

s
i1

+1 s
i2

+1

r
j
  

r
j
+1

s
i1

s
i2

 
 
Fig. 7.  Calculation of the probability for the bomb’s horizontal drift r taking values 
between jr  and 1jr +  from m intervals of surface slope s. Here, m = 1, and m = 2.  
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Fig. 8. Probability distribution of the bomb’s horizontal drift (scaled by the depth) r/H 
with n = 2,  σ = 0.2, and V = 300 m/s for various depth: (a) 12.2 m (i.e. 40 ft), (b) 50 m, (c) 
91.4 m (i.e., 300 ft), (d) 150 m, (e) 200 m, and (f) 250 m.  
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Fig. 9. Probability distribution of the bomb’s horizontal drift (scaled by the depth) r/H 
with n = 100,  σ = 0.2, and V = 300 m/s  for various depth: (a) 12.2 m (i.e. 40 ft), (b) 50 m, 
(c) 91.4 m (i.e., 300 ft), (d) 150 m, (e) 200 m, and (f) 250 m.  
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Fig. 10. Probability distribution of the bomb’s horizontal drift (scaled by the depth) r/H 
with n = 2,  σ = 1.0, V = 300 m/s  for various depth: (a) 12.2 m (i.e. 40 ft), (b) 50 m, (c) 
91.4 m (i.e., 300 ft), (d) 150 m, (e) 200 m, and (f) 250 m.  
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n=2  σ=0.2  Initial Speed=200m/s
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Fig. 11. Probability distribution of the bomb’s horizontal drift (scaled by the depth) r/H 
with n = 2,  σ = 0.2, V = 200 m/s  for various depth: (a) 12.2 m (i.e. 40 ft), (b) 50 m, (c) 
91.4 m (i.e., 300 ft), (d) 150 m, (e) 200 m, and (f) 250 m.  
 


